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Introduction 
 
The following analysis is intended as a starting point on the difficult topic of cylinder 
condensation. It is somewhat idealised, but represents scale effects and gives at least an order of 
magnitude value for the condensation rate during the admission stage of the steam engine cycle. 
As in so many other fields, John Perry[1] made a remarkable contribution to the topic about one 
hundred years ago; not only had he collected much experimental data, but in his usual style he set 
up theoretical models of several aspects of the process. One is tempted to say that all he lacked 
was a computer, but that might have denied him the fun of exercising his considerable skill in 
applied mathematics! He was aware of the strong effect of a liquid layer in determining 
condensation rate and of the effect the presence of a non-condensible gas might have in reducing 
it. He postulated that whilst condensation occurs during admission, the liquid layer probably 
evaporates during the later stages of expansion and during exhaust, and supported this idea with a 
formulation of the fluctuation in the surface temperature of the cylinder, and its attendant 
transient conduction process. He had a good idea of the thickness of the water layers likely to be 
formed - thin enough to remain as layers until they were evaporated - but he does not seem to 
have taken into account the controlling effect of the thermal resistance of the layer on 
condensation rate. 
 
For the practical engineer at the end of the 19th century cylinder condensation - particularly in 
unsuperheated engines - was a major adverse effect on efficiency. It was defined in terms of the 
'Missing Quantity' - a euphemism for the amount of steam consumed that could not be accounted 
for when the indicator card was analysed to yield the amount of steam that was actually present 
as vapour in the cylinder during expansion. It appears that the 'missing quantity' was in many 
cases as large as the mass of steam usefully employed. It is tempting to imagine that this was 
simply the result of heat loss from the outer surfaces of the cylinder, but Perry realised that this 
heat loss was far too small to account for such a condensation rate - hence the idea of transient 
conduction and condensation at the relatively cold cylinder wall during admission, followed by 
evaporation, and possibly even superheating of the cooler steam left in the cylinder during the 
exhaust stroke. Thus, whilst the net heat loss was small, the transient heat transfer process 
removed vapour by condensation at the start of the working stroke and replaced it by evaporation 
of the condensate layer towards the end - too late to produce any significant further work. 
 
Since Perry's time a great deal has been learned about the process of condensation. The kinetic 
theory of gases enables one to calculate the rate at which gas or vapour molecules impact upon a 
solid or liquid surface. Equilibrium between steam and water is a dynamic situation involving 
'condensation' of molecules that impact on the water surface, balanced by the 'evaporation' of 
molecules at an equal rate. In the non-equilibrium state, when the water surface is below 
saturation (i.e. equilibrium) temperature, the gross condensation rate remains high but the 
evaporation rate is diminished, resulting in a net condensation rate. On this basis the 
condensation coefficient (i.e. the net condensation rate divided by the temperature difference 
between the vapour and the surface of the water layer) would be very large indeed. For example, 
at atmospheric pressure a temperature difference of 1°C would result in a net condensation rate of 
about 3.4 kg/sq.m sec (1860 lb/ sq.ft hr ), corresponding to a heat transfer rate of 0.76 kW/sq.cm 
( 1.8 106 Btu/sq.ft hr ). This is to be compared with the heat transfer rate through a 0.025 mm 
(0.001") thick water layer, with the same (1°C) temperature drop across it, of about 0.0027 
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kW/sq.cm ( 6400 Btu/sq.ft ). Clearly the resistance of the water layer dominates, and this forms 
the basis of the calculations which follow. 
 
Condensation is greatly reduced by superheating the steam supplied to an engine; in fact this 
effect is probably more important than the increase in thermodynamic efficiency resulting from 
superheat. The problem here is to determine the degree of superheat required to inhibit 
condensation. This will form the topic of a separate note (I hope!). 
 
 

Outline of the Analysis
 
During one engine cycle the surfaces of the cylinder, ports and valve will be exposed to steam 
ranging in temperature from steam chest conditions to exhaust conditions. The temperature of the 
bulk of the cylinder will settle down to an intermediate value, and the transient conduction of 
heat into and out of the cylinder walls will alternately raise and lower the temperature of the 
surface above and below this value. The penetration of this temperature fluctuation will generally 
be quite small compared with the thickness of the cylinder wall; nevertheless it will be capable of 
extracting from the steam and later releasing to it a significant amount of heat. The processes of 
condensation into and evaporation from a water layer are similar, so I shall assume that the bulk 
of the cylinder assumes a temperature equal to the arithmetic mean of the steam chest and exhaust 
temperatures. With these assumptions the problem resolves into one of transient conduction into 
the cylinder through a water layer of varying thickness. Ideally these processes should be tracked 
through a complete engine cycle - a formidable problem! However it is possible to deal more 
simply with the admission phase of the cycle, and thus to form a reasonable estimate of the 
'Missing Quantity' 
 
Clearly, the resistance of the water layer as it builds up is the controlling factor in heat transfer to 
and from the cylinder wall. If we neglect wiredrawing, the saturation temperature of the steam 
during admission to the cylinder will remain constant, and with it the temperature of the surface 
of the water layer with which it is in contact. (This is a consequence of the very large 
condensation coefficient mentioned in the Introduction.) The rate of heat transfer through the 
water layer will certainly reduce as the layer increases in thickness and in addition it may change 
if the temperature of the cylinder surface changes. At first it appeared that the only way out 
would be a rather messy numerical solution of the partial differential equation governing 
transient conduction in the cylinder coupled with the varying boundary condition imposed by the 
water layer. However, serpendipity intervened, and a simple analytical solution was found! 
 
It will be shown below that  the interface between water layer and cylinder remains at a constant 
temperature during  heat transfer from the steam to the cylinder. The value of this temperature is 
determined by the thermal properties of the material from which the cylinder is made, together 
with the thermal properties of the water layer. This arises from the happy accident that both 
processes (i.e. transient conduction in the cylinder, and conduction through a water layer of 
increasing thickness) give a heat transfer rate which varies inversely as the square root of time; 
thus the two processes when placed in series can share the same interface temperature. The 
resulting equations can be integrated to give the amount of steam condensed during the admission 
phase - i.e. the 'Missing Quantity'. A sketch of the form of temperature distribution at successive 
intervals of time  ( 1< 2 < 3 ) is shown in Fig.1 
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Conduction into the cylinder wall
 
In normal operation the surface temperature of the cylinder will fluctuate above and below some 
mean temperature. For the present purpose we assume that the cylinder is initially at a uniform 
temperature equal to the mean of the inlet and exhaust steam temperatures. Provided we check 
that the penetration of the temperature disturbance into the cylinder is small we may treat the 
cylinder as a semi-infinite solid, in which case the temperature distribution θ following a step 
increase of surface temperature of ∆θs is given by:  
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where x = distance into cylinder wall  
 κ = thermal diffusivity of cylinder  (= ks/ρscs)  
 ks= thermal conductivity of cylinder material 
 ρs = density of cylinder material 
 cs = specific heat of cylinder material 
 θ0 = initial temperature of cylinder 
 t  = time  
 
[We can now check that the cylinder is thick enough to justify the 'semi-infinite' assumption. For 
an engine speed of 300 rpm the transient during admission of steam will last 0.1 second at most, 
and using this value together with a thermal diffusivity of 3.105 sq.m/sec (bronze) we find that 
the temperature disturbance has virtually decayed to zero in a distance of around 5 mm ( 0.2" ). 
With cast iron this distance will be halved, and higher speeds will further reduce the penetration. 
] 
 
The heat flux (i.e heat transfer per unit area and per unit time) into the cylinder wall 
corresponding to equation (1) will be: 
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[Note that the heat flux is proportional to 1/ √ t] 
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Heat transfer through the water layer
 
As with conduction into the cylinder wall, assume that the temperature difference driving heat 
through the water layer remains constant. [Both assumptions will be justified later].  The heat 
flux through the layer is : 
 

  q
k f f=
∆θ

λ     . . . . . .  (3) 

 
where kf = thermal conductivity of water 
 λ  = thickness of water layer 
 ∆θf = temperature difference across water layer 
 
As discussed in the Introduction,  the outer surface of the water layer is virtually at the saturation 
temperature of the steam admitted to the cylinder. Condensation will take place at this surface at 
a rate determined by the removal of the latent heat of condensation by conduction through the 
water layer into the cylinder. The condensation rate is therefore q/hfg  kg/sq.m sec, or expressed 
as a rate of increase in the thickness of the layer,  q/(ρf hfg) m/sec, where hfg is the enthalpy of 
evaporation (or condensation!). Using this we can write down a differential equation for the 
thickness of the water layer, λ : 
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This can be integrated directly, and together with the boundary condition that λ = 0 at  t = 0 
gives the result: 
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Inserting this in equation (3) gives the heat flux through the layer as: 
 
  q k hf f f fg= 0 5. .ρ ∆θ t    . . . . . (6) 

 
As in the case of conduction into the cylinder wall, conduction through the water layer is 
therefore proportional to  1/√ t 
 
 

Heat Transferred to the Cylinder
 
The two processes, conduction into the cylinder wall (equation 3), and conduction through the 
water layer (equation 6) both yield a heat flux inversely proportional to the square root of time;  
the assumption that the temperature of the cylinder wall remains constant (as do ∆θs and ∆θf ) is 
therefore valid when the two processes are placed in series. The values of the two temperature 
drops can be determined by equating the heat fluxes defined by equations 3 & 6, and noting that 
that the overall temperature drop ∆θ = ∆θs + ∆θf .This overall temperature drop is of course equal 
to the difference between the saturation temperature of the steam and the initial temperature of 
the cylinder wall. Equating the heat fluxes gives: 
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Substituting ∆θ  -  ∆θs  for  ∆θf  leads to the quadratic equation in  ∆θs  : 
 

   ( )γ ∆θ ∆θ ∆θs s
2

0+ − =
 
 i.e. (∆θs = − + +1 1 4 2γ∆θ γ/)   . . . . (8) 
 

where   γ =  
k c

k h
s s s

f f fg

ρ
ρ π

.
2

  

Substituting ∆θs  from equation 8 into equation 2 we get the heat flux,  q: 
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Thus the net heat transfer on an elementary surface of area dA if exposed to steam for time  τ is: 
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t
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 . . . . . (10) 

 
Thus if we know the thermal properties of the material of the cylinder and of water, and also the 
difference between the steam temperature and the initial temperature of the cylinder we can 
calculate the amount of steam  that would be condensed on an element of surface exposed to 
steam for a period of time τ. The practical situation is that only the ports, cylinder head and the 
end face of the piston are exposed at the start of the admission process. As far as the cylindrical 
surface is concerned, we need to allow for the progressive exposure of that surface; this is dealt 
with in the next section.   
 

The  'Missing  Quantity'
 
In order to calculate the condensation on the cylindrical surface of the cylinder we need to know 
the rate at which it is exposed to the steam, and also the point of cut-off. If ω is the angular 
velocity and s = piston stroke, then taking a datum of t = 0 when the piston is at the beginning of 
its stroke, the surface exposed during a time interval dt at t is given by: 
 

  ( )dA D t dtp= π
ω

ω
2

sin  . . . . . (11) 

 
where Dp is the piston diameter   
 
In general, an element of surface reached by the piston at time t will be exposed to steam for a 
period τ, where τ  =  t - tc  and tc is the time of cut-off. The amount of heat transferred to it is 
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given by equation (10). Thus the total amount of heat tranferred to the cylindrical surface up to 
the time of cut-off is: 
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 where s is the piston stroke. 
 
Notice that the definite integral I(ω tc) depends only upon the value of ω tc, which is the crank 
angle at cut-off.  
 
Turning now to the heat transfer to the end cover and the face of the piston, the ‘exposure’ time 
in this case will be the time to cut-off tc, and the total amount of heat transferred will be: 
 

  Q Dp p= π tc
ξ
ω

ω2 .  . . . . . (13) 

 
If we now divide the sum of equations 12 & 13 by the heat required to condense all the steam in 
the cylinder at the point of cut-off, we get the 'Missing Quantity' M, or the ratio of excess steam 
admitted to the steam that would be required if there were no condensation.  Thus: 
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  where 
( )( )

f
t

c
c=
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2

cos ω
 is the fractional cut-off,  and ρg is the steam density 

 
 Evaluation of Equation 14
 
I am unable to integrate the definite integral I(ω tc) analytically and have therefore integrated it 
numerically. Rather than presenting it as a function of  crank angle at cut-off , ω tc , it is more 
convenient to use the fractional cut-off, fc , as independent variable. The result is shown in Fig.2 
 

Fig. 2 Value of Integral  I(ωt)
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The following polynomial has been fitted to the curve in Fig.2 
 

  . . .  (15) I t f f f fc c c c c( ) . . . . .ω = − + + +4 243 6 826 4 529 0 327 0 005844 3 2

 
The second term in the square brackets in Equation (14) would also be more conveniently 
expressed in terms of the fractional cut-off, and in this form becomes: 
 

  ( ) ( )D s fp ccos− −1 1 2  

 
The value of M can be calculated from the above equations. (The calculation is greatly facilitated 
by the use of a small computer programme, which can be supplied by the author)   
 
Presentation of Results. 
 
The traditional method of presenting equation (14) would be to cast it in terms of dimensionless 
groups; however, this would lose sight of  the primary variables such as speed, steam pressure 
etc. which are the factors that readily come to mind when dealing with steam engines. So a rather 
less elegant but perhaps more useful method will be adopted. This involves setting up a ‘standard 
engine’ of known size and speed, operating at a known cut-off , and calculating the value of the 
missing quantity Ms for a range of steam chest pressures, and for several cylinder materials. 
 
As the standard, we will take an engine with  the following parameters: 
  Diameter of cylinder   2 in. 
  Stroke     4 in 
  Fractional cut-off   0.5 
  Speed     500 rpm 
            
The result of this calculation is shown in Fig.3 for steam chest pressures from 25 psig to 300 psig 
and for bronze, cast iron and ceramic cylinders. ( The ceramic chosen was porcelain - the only 
ceramic material for which I could readily obtain data!)  Since all steam engines do not have 
cylinders 2″ diameter and run at 500 rpm etc. some means must now be found of scaling factors 
for size, speed, cut-off and Dp/s !  

Fig.3  The Missing Quantity Ms for the Standard Engine
                   (standard size, speed, c/o, D/s )
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When calculating Ms for Fig.3 the thermal properties of the steam must be known, and also the 
difference between the steam temperature and the mean cylinder temperature. All these can be 
related to the steam pressure, which is the independent variable in Fig.3 I have assumed that since 
the cylinder is alternately exposed to steam at the boiler pressure, and steam at atmospheric 
pressure, its mean temperature will be ( boiler temp - 100)/2.  
 
   
The Effect of speed 
 
The speed appears only in the 1/√ω  term in Equation (14), so the effect is for the Missing 
Quantity,  to be reduced in proportion to the square root of the speed. This appears to be in line 
with Perry’s estimates, and indeed with my own experiments. Since rotational speed in RPM is 
proportional  to angular velocity, we may express the speed factor as  
 
  R speed rpm rpm= 1 500( ) ( )  . .(16) 
 
 
The Effect of Size 
 
For a fixed ratio of Dp / s  size enters into Equation (14) only in the term 1/Dp, so that the Missing 
Quantity increases inversely as the size of the engine. The size factor S is therefore: 
 
  ( )S piston dia in in= 1 . 2  . . . . (17) 
 
 
The effect of Cut-off and Piston dia./Stroke ratio 

The effect of cut-off on M  is governed by the terms 1/fc  and I t
D
s

tc
p

c( )ω +
⎡

⎣
⎢

⎤

⎦
⎥ω . The term 

ω tc can be expressed in terms of the fractional cut-off, but the effect of this and Dp/s cannot be 
separated . The cut-off effect C (relative to the value for the ‘standard engine’ values of 0.5 
fractional cut-off and Dp/s = 0.5) is shown in Fig.4 as a function of fractional cut-off for various 
values of Dp/s 

   ( ) ( )( )C fractional cut off D sp= −fn 0 5. ,    . . (18) 
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Fig.4 Effect of cut-off and D/s ratio on Ms
(relative to 0.5 fractional cut-off and D/s = 0.5)
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The Value of the Missing Quantity for any engine and operating condition 
Putting together the above results, we are able to scale the value of the Missing Quantity  for the 
‘Standard Engine’, Ms, so that it represents any set of data. Thus: 
 
  M  =  Ms ×  R ×  S ×  C  . . . . . (19) 
 
 where Ms is read from Fig.3,  C  from Fig.4, and R and S are obtained from Equations 
(16) and (17), respectively. 
 
This way of expressing the results displays clearly the separate effects of speed, size, cut-off, Dp/s 
ratio, steam pressure, and cylinder material. 
 
 
 
Illustrative Examples 
 
The following results, all for cast iron cylinders, bring out the important trends. 

 
Dp  s  Speed  Pressure Cut-off  M Perry 
(in.)  (in.)  (rpm)  (psig)  (fractional)  (see  
           below) 
 
2  4  500  100  0.5  0.400 (0.71) 
2  2  500  100  0.5  0.589 (0.71) 
2  4  1000  100  0.5  0.284 (0.50) 
2   4  500  200  0.5  0.275  
2  4  500  100  0.25  0.474 (1.20) 
15  30  200  150  0.25  0.081 
15  30  200  150  0.5  0.068 (0.15) 
15  30  50  150  0.5  0.137 (0.30) 
1  2  500  75  0.7  0.895 
1   1  1000  100  0.3  1.015     (1.44) 
 
(If you need more, ask me to send you the computer programme!) 
 
John Perry (“The Steam Engine….”, 1909) presents his students with the following rule: 
 
   Missing Quantity =  15 (1 + r)/ (d√n) 
 
where r is the expansion ratio, d is the cylinder diameter in inches, and n is the number of strokes 
per minute. The effect of pressure is not included, but from the context it seems likely that he had 
in mind pressures less than 100 psig. I have included a few values from Perry’s rule in the above 
table. The trends are reasonably in agreement, but his figures are higher. However, Perry goes on 
to say, “Instead of 15 we might have as small a number as 5 in a well-jacketed, well drained 
cylinder of good construction with four double beat valves, and we might have as great a number 
as 30 or even more in badly drained and unjacketed engines with slide valves. This range 
obviously embraces the calculated values presented here! 
 
The point of real interest is that all the trends exhibited by Perry’s rule agree very closely with 
the theoretical results. Perry gives a pressure effect for condensing engines, for which M is 
inversely proportional to the square root of pressure - again a trend that is consistent with the 
theory. 
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